Wednesday, August 27, 2008

Loose Diamonds

http://www.darje.com.au/images/lp_dimand.jpgBradley Gough Diamonds Specializes in Diamonds. Our selection includes genuine GIA or EGL certified diamonds in all of the major cuts in an assortment of sizes and grades. Bradley Gough Diamonds also carries the stunning Star 129, The Hearts On Fire, and the Dream Diamond by Hearts on Fire. Bradley Gough Diamonds takes the pressure out of buying diamonds. Since the diamonds are certified by the leading gem laboratories in the world, the Gem Institute of America (GIA) or the European Gem League, (EGL) and our staff consists of diamontologists certified by The Diamond Council of America, you will know you are looking at a diamond that was graded by a professional and presented by a professional.
The image “http://www.bradleygoughdiamonds.com/pictures/diamond.jpg” cannot be displayed, because it contains errors.

Other

  • Gold is sometimes used in computer components
  • The image “http://img.alibaba.com/photo/100187777/Ladies_Belcher_Necklace.jpg” cannot be displayed, because it contains errors.
  • In medieval times, gold was often seen as beneficial for the health (even though it was not), in the belief that something that rare and beautiful could not be anything but healthy. Even some modern esotericists and forms of alternative medicine assign metallic gold a healing power. Some gold salts do have anti-inflammatory properties and are used as pharmaceuticals in the treatment of arthritis and other similar conditions. However, only salts and radioisotopes of gold are of pharmacological value, as elemental (metallic) gold is inert to all chemicals it encounters inside the body.
  • Gold leaf, flake or dust is used on and in some gourmet foodstuffs, notably sweets and drinks as decorative ingredient. Gold flake was used by the nobility in Medieval Europe as a decoration in foodstuffs and drinks, in the form of leaf, flakes or dust, either to demonstrate the host's wealth or in the belief that something that valuable and rare must be beneficial for one's health.
  • Gold solder is used for joining the components of gold jewelry by high-temperature hard soldering or brazing. If the work is to be of hallmarking quality, gold solder must match the carat weight of the work, and alloy formulas are manufactured in most industry-standard carat weights to color match yellow and white gold. Gold solder is usually made in at least three melting-point ranges referred to as Easy, Medium and Hard. By using the hard, high-melting point solder first, followed by solders with progressively lower melting points, goldsmiths can assemble complex items with several separate soldered joints.
  • Gold can be used in food and has the E Number 175. Goldwasser (German: "Goldwater") is a traditional herbal liqueur produced in Gdańsk, Poland, and Schwabach, Germany, and contains flakes of gold leaf. There are also some expensive (~$1000) cocktails which contain flakes of gold leaf[citation needed]. However, since metallic gold is inert to all body chemistry, it adds no taste nor has it any other nutritional effect and leaves the body unaltered.
  • Dentistry. Gold alloys are used in restorative dentistry, especially in tooth restorations, such as crowns and permanent bridges. The gold alloys' slight malleability facilitates the creation of a superior molar mating surface with other teeth and produces results that are generally more satisfactory than those produced by the creation of porcelain crowns. The use of gold crowns in more prominent teeth such as incisors is favored in some cultures and discouraged in others.
  • Gold can be made into thread and used in embroidery.
  • Gold is ductile and malleable, meaning it can be drawn into very thin wire and can be beaten into very thin sheets known as gold leaf.
  • Gold produces a deep, intense red color when used as a coloring agent in cranberry glass.
  • In photography, Gold toners are used to shift the color of silver bromide black and white prints towards brown or blue tones, or to increase their stability. Used on sepia-toned prints, gold toners produce red tones. Kodak publish formulas for several types of gold toners, which use gold as the chloride (Kodak, 2006).
  • Electronics. The concentration of free electrons in gold metal is 5.90×1022 cm-3. Gold is highly conductive to electricity, and has been used for electrical wiring in some high energy applications (silver is even more conductive per volume, but gold has the advantage of corrosion resistance). For example, gold electrical wires were used during some of the Manhattan Project's atomic experiments, but large high current silver wires were used in the calutron isotope separator magnets in the project.
  • Though gold is attacked by free chlorine, its good conductivity and general resistance to oxidation and corrosion in other environments (including resistance to non-chlorinated acids) has led to its widespread industrial use in the electronic era as a thin layer coating electrical connectors of all kinds, thereby ensuring good connection. For example, gold is used in the connectors of the more expensive electronics cables, such as audio, video and USB cables. The benefit of using gold over other connector metals such as tin in these applications, is highly debated. Gold connectors are often criticized by audio-visual experts as unnecessary for most consumers and seen as simply a marketing ploy. However, the use of gold in other applications in electronic sliding contacts in highly humid or corrosive atmospheres, and in use for contacts with a very high failure cost (certain computers, communications equipment, spacecraft, jet aircraft engines) remains very common, and is unlikely to be replaced in the near future by any other metal.
  • Besides sliding electrical contacts, gold is also used in electrical contacts because of its resistance to corrosion, electrical conductivity, ductility and lack of toxicity. Switch contacts are generally subjected to more intense corrosion stress than are sliding contacts.
  • Colloidal gold (Colloidal sols of gold nanoparticles) in water are intensely red-colored, and can be made with tightly-controlled particle sizes up to a few tens of nm across by reduction of gold chloride with citrate or ascorbate ions. Colloidal gold is used in research applications in medicine, biology and materials science. The technique of immunogold labeling exploits the ability of the gold particles to adsorb protein molecules onto their surfaces. Colloidal gold particles coated with specific antibodies can be used as probes for the presence and position of antigens on the surfaces of cells (Faulk and Taylor 1979). In ultrathin sections of tissues viewed by electron microscopy, the immunogold labels appear as extremely dense round spots at the position of the antigen (Roth et al. 1980). Colloidal gold is also the form of gold used as gold paint on ceramics prior to firing.
  • Gold, or alloys of gold and palladium, are applied as conductive coating to biological specimens and other non-conducting materials such as plastics and glass to be viewed in a scanning electron microscope. The coating, which is usually applied by sputtering with an argon plasma, has a triple role in this application. Gold's very high electrical conductivity drains electrical charge to earth, and its very high density provides stopping power for electrons in the SEM's electron beam, helping to limit the depth to which the electron beam penetrates the specimen. This improves definition of the position and topography of the specimen surface and increases the spatial resolution of the image. Gold also produces a high output of secondary electrons when irradiated by an electron beam, and these low-energy electrons are the most commonly-used signal source used in the scanning electron microscope.
  • Many competitions, and honors, such as the Olympics and the Nobel Prize, award a gold medal to the winner.
  • As gold is a good reflector of electromagnetic radiation such as infrared and visible light as well as radio waves, it is used for the protective coatings on many artificial satellites, in infrared protective faceplates in thermal protection suits and astronauts' helmets and in electronic warfare planes like the EA-6B Prowler.
  • Gold is used as the reflective layer on some high-end CDs.
  • The isotope gold-198, (half-life: 2.7 days) is used in some cancer treatments and for treating other diseases.
  • Automobiles may use gold for heat insulation. McLaren F1 uses gold foil in the engine compartment.

Characteristics

Gold is the most malleable and ductile metal; a single gram can be beaten into a sheet of one square meter, or an ounce into 300 square feet. Gold leaf can be beaten thin enough to become translucent. The transmitted light appears greenish blue, because gold strongly reflects yellow and red.

Gold readily forms alloys with many other metals. These alloys can be produced to increase the hardness or to create exotic colors (see below). Gold is a good conductor of heat and electricity, and is not affected by air and most reagents. Heat, moisture, oxygen, and most corrosive agents have very little chemical effect on gold, making it well-suited for use in coins and jewelry; conversely, halogens will chemically alter gold, and aqua regia dissolves it via formation of the chloraurate ion.

Common oxidation states of gold include +1 (gold(I) or aurous compounds) and +3 (gold(III) or auric compounds). Gold ions in solution are readily reduced and precipitated out as gold metal by adding any other metal as the reducing agent. The added metal is oxidized and dissolves allowing the gold to be displaced from solution and be recovered as a solid precipitate.

Recent research undertaken by Sir Frank Reith of the Australian National University shows that microbes play an important role in forming gold deposits, transporting and precipitating gold to form grains and nuggets that collect in alluvial deposits.

High quality pure metallic gold is tasteless; in keeping with its resistance to corrosion (it is metal ions which confer taste to metals).

In addition, gold is very dense, a cubic meter weighing 19300 kg. By comparison, the density of lead is 11340 kg/m³, and the densest element, iridium, is 22650 kg/m³.

http://img.alibaba.com/photo/11758062/Ladies_Gold_Filled_Pink_Elephant_Necklace_Set.jpg

Gold

Gold (pronounced /ˈɡoʊld/) is a chemical element with the symbol Au (from its Latin name aurum) and atomic number 79. It is a highly sought-after precious metal which has been used as money, a store of value and in jewelry since the beginning of recorded history. The metal occurs as nuggets or grains in rocks, underground "veins" and in alluvial deposits. It is one of the coinage metals. Gold is dense, soft, shiny and the most malleable and ductile substance known. Pure gold has a bright yellow color traditionally considered attractive.
Gold formed the basis for the gold standard used before the collapse of the Bretton Woods system. The ISO currency code of gold bullion is XAU.
Modern industrial uses include dentistry and electronics, where gold has traditionally found use because of its good resistance to oxidative corrosion.
Chemically, gold is a transition metal and can form trivalent and univalent cations upon solvation. Gold does not react with most chemicals, but is attacked by chlorine, fluorine, aqua regia and cyanide. Gold dissolves in mercury, forming amalgam alloys, but does not react with it. Gold is insoluble in nitric acid, which will dissolve silver and base metals, and this is the basis of the gold refining technique known as "inquartation and parting". Nitric acid has long been used to confirm the presence of gold in items, and this is the origin of the colloquial term "acid test," referring to a gold standard test for genuine value.